
Relativistic effects on ground state properties of 4d and 5d transition metals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 4371

(http://iopscience.iop.org/0953-8984/2/19/006)

Download details:

IP Address: 171.66.16.103

The article was downloaded on 11/05/2010 at 05:55

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/19
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys.: Condens. Matter 2 (1990) 4371-4394. Printed in the UK 
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Abstract. Cohesive energies, bulk moduli and equilibrium lattice constants have been 
calculated for the 4d and 5d transition metals with face-centred cubic crystal lattices (Rh, 
Pd, Ag and Ir, Pt, Au). For the total energy calculations according to the density functional 
theory in the local density approximation we have used an ab initio pseudopotential method. 
Two calculations have been performed for each element using either non-relativistic or 
scalar-relativistic ionic pseudopotentials. The pseudo-wavefunctions and charge densities of 
the valence electrons have been represented by a mixed basis of plane waves and localised 
orbitals derived from the atomic d pseudo-wavefunctions. For the 5d metals we find a 
significant improvement of the results by the relativistic treatment, as expected because of 
their heavy atomic nuclei. In the case of the 4d metals the relativistic results are of similar 
quality as for the 5d metals, but now the non-relativistic values are slightly closer to the 
experiment, possibly due to an error cancellation effect. 

1. Introduction 

One exciting topic in the solid state theory is the understanding and prediction of 
cohesive properties of transition metals and their alloys from first principles, without any 
experimental information being put into the calculation. A very successful theoretical 
framework for this is the density functional theory, initialised in the sixties by Hohenberg 
and Kohn (1964), in its local density approximation (LDA) (Kohn and Sham 1965). The 
progress in this theory is closely connected with the development of improved computers 
and efficient computer algorithms (for reviews see, e.g., Kohn and Vashishta 1983, 
Koelling 1981, Callaway and March 1984, Ihm 1988). 

In the seventies self-consistent calculations became possible for cohesive properties 
of close-packed elemental metals, for example, with Slater’s augmented-plane-wave 
method (APW) (Slater 1937) or the Green function method of Korringa, Kohn and 
Rostoker (KKR) (Korringa 1947, Kohn and Rostoker 1954). A collection of bulk and 
electronic properties for 32 metals from H to In, determined with the KKR method, has 
been published by Moruzzi, Janak and Williams (1978) and has become a kind of 
standard reference for density functional results. 
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The application of the APW and the KKR method is more or less limited to elemental 
solids by the following feature: the basis sets, augmented plane or spherical waves, 
respectively, are not independent of the energy and therefore lead to a non-standard 
eigenvalue problem with a complicated, non-linear energy dependence. This com- 
plication has been solved by linearisation of the energy dependence of the eigenvalue 
problem, yielding augmented basis orbitals which are independent of energy in the first 
order (Andersen 1975). Such linearised methods are for example the linear-muffin-tin- 
orbital method (LMTO) (Andersen 1975, Andersen 1984, Skriver 1984, Andersen et a1 
1985, Andersen er a1 1987) or the closely related linear augmented-spherical-wave 
method (ASW) (Williams et a1 1979). Both are developments of the KKR method which 
allow for calculations of systems with large and complicated unit cells. By making a shape 
approximation for the crystal potential, i.e. the potential is assumed to be spherically 
symmetric within touching muffin-tin spheres or slightly overlapping atomic Wigner- 
Seitz spheres around the atomic sites and flat in the remaining regions, the accuracy of 
the results decreases if the atoms are not close-packed. Calculations of lattice distortion 
energies are also problematic. However, this can be overcome by the full-potential LMTO 
method (Weyrich 1988, Methfessel 1988) or the FP LAPW method (Wimmer er a1 1981, 
Weinert et a1 1982). 

Another method of calculation, using energy-independent basis sets and making no 
shape approximation, is provided by the pseudopotential theory which was developed 
during the sixties and seventies (Phillips and Kleinman 1959, Cohen and Heine 1970, 
Ihm et a1 1979). Here only the valence electrons, which are responsible for the chemical 
binding, are treated explicitly whereas all the inert core electrons, together with the 
nuclei, are assumed to behave identically in the solid and in the free atoms. In this frozen- 
core approximation the influence of the core on the valence electrons is described by a 
pseudopotential. In earlier times this pseudopotential was usually an analytic model 
potential with several parameters which were chosen to reproduce some experimentally 
observed properties. The pseudopotential could also be derived from atomic core and 
valence wavefunctions without experimental information (Phillips and Kleinman 1959). 
In this scheme the pseudo-wavefunctions for atomic valence states have the same shape, 
but a different amplitude from the real wavefunctions outside the core region. This 
causes an error in the calculation of the Coulomb potential. Therefore it is a crucial 
problem in self-consistent calculations of electronic structures. With the use of norm- 
conserving ab initio pseudopotentials introduced by Hamann, Schluter and Chiang 
(1979) these problems no longer exist and the pseudopotential method has become as 
ab initio as the above mentioned all-electron methods. 

For many semiconductors (Yin and Cohen 1982) or simple metals (Lam and Cohen 
1981) with only s and p valence states, the pseudopotentials are sufficiently smooth so 
that a small enough basis set of simple plane waves can be used. In the case of transition 
metals, the somewhat deeper pseudopotentials render plane-wave expansions unec- 
onomical. Amixed basis consisting of plane waves and additional, well localised, energy- 
independent functions, which describe the more tightly bound nature of the d states, 
has proved to be very efficient (Louie er a1 1979, Fu and Ho 1983). 

By avoiding the explicit treatment of the large number of inert core electrons, this 
method is at least as effective as the all-electron methods. Because of the mathematically 
simple basis set, very fast computer algorithms like fast Fourier transformations and 
vectorisations yield a high calculational speed. No approximations are made for the 
shape of the potential. Besides the determination of total energies of equilibrium 
configurations it is possible to calculate energies of slightly or strongly distorted con- 
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figurations (e.g. phonon frequencies (Ho et a1 1984), structural phase transitions (Yin 
and Cohen 1982, Chen et a1 1988), surface reconstructions (Ho and Bohnen 1987)). 
Interatomic forces can be calculated (Ihm et al1979, Ho etall983) using the Hellmann- 
Feynman theorem (Hellmann 1937, Feynman 1939). The approximations made, the 
neglect of the core charge density and the shape difference between real and pseudo- 
valence charge densities within a small sphere around the atomic positions, hold as long 
as the real core and valence charge densities do not significantly overlap outside this 
sphere. 

The purpose of the investigations presented in this article is to assess the accuracy 
we can expect when using the density functional theory in LDA for the calculation of 
cohesive properties of composed systems containing transition metal elements, by 
comparing the results for single crystals with experimental values. In their afore- 
mentioned book Moruzzi eta1 (1978) publishedvalues for the 3d and 4d transition metals 
which are in very satisfactory agreement with experimental values. In their calculations 
they solved the Schrodinger equation for core and valence electrons. They did not take 
relativistic effects into account. This seems to be justified because the atomic nuclei were 
not too heavy. For 5d transition metals, on the other hand, the atomic nuclei are already 
so heavy that important influences of relativity, at least for the core electrons, are to 
be expected. To check these suppositions we have calculated the equilibrium lattice 
constants ao, bulk moduli Bo and cohesive energies Eofor the series of face-centred cubic 
(FCC) crystals, Rh, Pd, Ag, and Ir, Pt, Au, on the right sideof the4dand5dperiods. Using 
an ab initio mixed-basis pseudopotential method (MB) with non-local pseudopotentials 
constructed both non-relativistically (NR) (Hamann et a1 1979) and scalar-relativistically 
(sR), (with no spin-orbit coupling included) (Kleinman 1980, Bachelet and Schluter 
1982), we have calculated ao, Bo,  and Eo for each crystal. 

The article is organised as follows. In section 2 our calculation method is described. 
Several results about relativistic effects already appearing in the atomic calculations are 
mentioned. Section 3 contains our results for the solids which are compared with values 
from the experiment and previous calculations. An explanation of the differences 
between the non-relativistic and scalar-relativistic results, using band-structure and 
charge-density plots, is presented in section 4. In section 5 we give a summary of our 
results. 

2. The mixed-basis pseudopotential method 

2.1. Pseudopotentials 

The generation of the non-local norm-conserving ionic pseudopotentials has been per- 
formed according to the prescription of Hamann et a1 (Hamann et a1 1979, Bachelet and 
Schluter 1982). 

As a first step we have made atomic all-electron calculations for several different 
configurations of each atom within the LDA using the Hedin-Lundqvist parametrisation 
for the local exchange-correlation potential (Hedin and Lundqvist 1971). For both non- 
relativistic and fully relativistic calculations we have used a Herman-Skillman-type 
computer program (Herman and Skillman 1963). The pseudopotentials have been 
generated for prototype configurations by matching the non-relativistic or relativistic 
eigenvalues and nodeless pseudo-wavefunctions of the valence orbitals (4d, 5s, 5p and 
5d, 6s, 6p, respectively, for the 4d and 5d metals) to the corresponding all-electron 
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eigenvalues and wavefunctions outside a core radius. In this scheme the relativistic 
effects on the valence electrons are incorporated in the pseudopotentials. 

To test the transferability of the pseudopotentials we have made atomic pseudo- 
potential and all-electron calculations for several configurations. In table 1 the valence 
orbital eigenvalues and the excitation energies for different configurations of Ag and 
Au obtained from the pseudopotential calculations are listed, and in brackets their 
deviations from the values of the all-electron calculations. The calculations for the other 
four elements exhibit similar deviations. In the relativistic case we give valence energy 
levels obtained without spin-orbit splitting (scalar-relativistic values (Bachelet and 
Schliiter 1982)). The non-relativistic and the scalar-relativistic levels of the 4d metals 
are only slightly changed, for the 5d metals occupied 6s and 6p levels are stronger shifted 
to lower energies, 5d levels to higher energies. 

Table 1. (a) Non-relativistic atomic eigenvalues and excitation energies of silver (prototype 
configuration [Kr]4d9 7s5sn.755p" ( b )  Scalar-relativistic atomic eigenvalues and excitation 
energies of silver (prototype configuration [Kr]4d9 755s" 755pn.5n), (c) Non-relativistic atomic 
eigenvalues and excitation energies of gold (prototype configuration [Xe]5d9 756s" 756p0 ''I) I .  

(d )  Scalar-relativistic atomic eigenvalues and excitation energies of gold (prototype con- 
figuration [Xe]5dy 756s"~756p0~s"). 

Valence state 
(4 eigenvalues (Ryd) 

Excitation 
Configuration d S P energy (RYd) 

[Kr]4d1'5si5p" -0.6015 

[Kr]4d'"5s05p' -0.7317 

[Kr]4dy5s25p" -0.8717 

[Kr]4d95s'5p' - 0.9905 

[Kr]4dy5sn5p2 - 1.0928 

[Kr]4d'"5sn5pn - 1.1887 

(+0.0011) 

(+0.0023) 

(-0.0073) 

(-0.0078) 

(-0.0084) 

(+0.0040) 

- 0.3222 
(-0.0005) 
-0.4100 

(-0.0004) 
- 0.4067 

(+0.0018) 

(+0.0014) 
-0.4837 

- 0.5464 
(+0.001 1) 

(-0.0011) 
- 0.8047 

-0.0701 
(-0.0003) 
-0.1387 

(-0.0002) 
-0.1126 

(+0.0013) 
-0.1717 

(+O.OOll) 

(+0.0011) 
-0.2168 

-014640 
(-0.0014) 

0 

0.2606 

0.3697 
(+ 0.0033) 

0.6723 
(+ 0.0028) 

0.9933 
(+0.0028) 

0.5588 

(0) 

(+0.0002) 

(- 0.0008) 

Valence state 
( b )  eigenvalues (Ryd) 

Excitation 
Configuration d S P energy (RYd) 

[Kr]4d"5s'5p0 - 0.5691 

[Kr]4d1"5s05p' -0.7082 

[Kr]4d95s25pn -0.8123 

[Kr]4dy5s15p' -0.9424 

[Kr]4d95sn5p2 -1.0535 

[Kr]4d"5sn5pn - 1.1725 

(+0.0013) 

(+0.0023) 

( - 0.0057) 

(-0.0066) 

(-0.0075) 

(+0.0040) 

-0.3524 
(-0.0003) 
-0.4495 

(- 0.0003) 
- 0.4326 

(+0.0019) 
-0.5199 

(+0.0012) 
- 0.5902 

(+0.0009) 
-0.8597 

(-0.0011) 

- 0.0678 
(0.0000) 

(0.0000) 
-0.1421 

-0.1058 
(+ 0.0017) 
-0.1712 

(+0.0014) 
-0.2200 

(+0.0014) 
-0.4786 

(-0.0011) 

0 

0.2947 
(+ 0.0003) 

0.2959 
(+0.0026) 

0.6331 
(+0.0025) 

0.9927 
(+0.0028) 

0.6010 

(0) 

(-0.0007) 
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Table 1. (continued) 

Valence state 
( c )  eigenvalues (Ryd) Excitation 
Configuration d S P energy (RYd) 

[Xe]5di"6s16p" -0.6140 

[Xe]5dI06s"6p' -0.7364 

[Xe]5d96s26p" -0.8358 

[Xe]5d96s'6pi - 0.9476 

[Xe]5d96s"6p2 -1.0444 

[ Xe]5di06s"6p" - 1.1870 

(+0.0008) 

(+ 0.001 7 )  

(-0.0048) 

(-0.0055) 

(-0.0062) 

(+ 0.0033) 

-0.3320 
(-0.0004) 
-0.4163 

(-0.0003) 
-0.4099 

(+0.0015) 
- 0.4843 

(+0.0011) 
-0.5455 

(+0.0008) 
-0.8104 

(-0.0008) 

-0.0752 
(-0.0002) 

(-0.0002) 
-0.1420 

-0.1157 
(+0.0013) 
-0.1733 

(+0.001 1) 

(+0.0011) 

(- 0.001 1) 

-0.2175 

-0.4696 

0 

0.2645 

0.3525 

0.6547 

0.9743 

0.5666 

( 0 )  

(+0.0001) 

( + 0.0023) 

(+0.0021) 

(+ 0.0022) 

(-0.0006) 
~ ~~ 

Valence state 
eigenvalues (Ryd) 

(4 Excitation 
Configuration d S P energy (RYd) 

[Xe]5d'"6s16p" -0.5300 

[Xe]5d1"6s06pl -0.6785 

[Xe]5d96s26p" -0.6838 

[Xe]5d96s16p' -0.8283 

[Xe]5d96s"6pz - 0.9502 

[Xe]5d'"6s06pn - 1,1515 

(+ 0.0039) 

(+0.0028) 

(+0.0001) 

(-0.0020) 

(-0.0035) 

(+0.0052) 

-0.45 14 
(+0.0008) 
-0.5636 

(-0.000l) 

(+0.0022) 
-0.5139 

-0.6200 
(+0.0009) 
- 0.7049 

(+0.0005) 
- 1.0022 

( -0.0001) 

-0.07 18 
(+0.0032) 

(+0.0029) 

(+ 0.0049) 

(+0.0046) 

(+0.0049) 

-0.1541 

- 0.0976 

-0.1738 

-0.2289 

-0.5146 
(-0.0032) 

0 

0.3930 
(+ 0.0028) 

0.1232 
(+0.0007) 

0.5535 
(+0.0025) 

1.0149 
(+0.0066) 

0.7218 

( 0 )  

(-0.0004) 

Atomic ground state configurations and their total energies are given in table 2. The 
total energies for the all-electron atoms, , are obtained by non-relativistic spin- 
polarised calculations or fully relativistic calculations including spin-orbit coupling. For 
the total energies of the pseudo-atoms, E,4",, , the difference between the spin-polarised 
and the non-spin-polarised non-relativistic all-electron energies has been added to the 
energy obtained from the non-spin-polarised pseudo-atom calculation to take spin- 
polarisation into account. 

The radial parts of the atomic valence pseudo-wavefunctions are shown in figure 1. 
As already expected from the eigenvalues of table 1, the effect of relativity is small for 
the 4d elements, but for the 5d elements the s and p pseudo-wavefuiictions are clearly 
shifted towards the nuclei and the d pseudo-wavefunctions are pulled outside. This, 
together with the shifts of the s and p eigenvalues to lower and the d eigenvalues to 
higher energies, is an indication of the relativistic contraction of s and p core orbitals 
(Christensen 1984). The s and p valence wavefunctions are indirectly attracted by the 
core due to the condition that valence states have to be orthogonal to core states. The 
repulsion of the d wavefunctions is caused by the fact that the nuclear potential is more 
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Table2. (a )  Non-relativisticatomicgroundstate configurations and totalenergies. (6) Scalar- 
relativistic atomic ground state configurations and total energies. The experimental data for 
the ground state configurations are taken from Ashcroft and Mermin (1976). (ae: all-electron 
calculation; ps: pseudopotential calculations.) 

(a )  Ground state E E:&, Ground state 
Element (calculation) (RYd) (Ryd) (experiment) 

Rh [Kr]4d9 -9366.4124 -44.6355 [Kr]4d85sl 
Pd [Kr]4d'" -9870.4142 -58.6979 [Kr]4d'" 
Ag [Kr]4d'"5s1 -10 389.7416 -74.9122 [Kr]4d1"5s' 

Ir [Xe]5d9 -33 602.8898 -41.1184 [Xe]5d76s' 
Pt [XelSd'" -34 652.4919 -53.5467 [Xe]5d96s' 
Au [Xe]5d"6s' -35 720.7484 -67.7138 [Xe]5d'"6s1 

(6) Ground state E"' atom E$o, Ground state 
Element (calculation) (Ryd) (Ryd) (experiment) 

Rh [Kr]4dY -9548.6836 -44.1501 [Kr]4dR5s' 
Pd [Kr]4d'" -10 071.2594 -58.0775 [Kr]4d1" 
Ag [ Kr]4d'"5s1 -10 610.6253 -74.2067 [Kr]4d1"5s' 

Ir [Xe]5dx6s' -35 623.7294 -40.2402 [Xe]5d76s2 
Pt [XeISd'" -36 797.4073 -52.3990 [Xe]5d96s' 
Au [Xe]5d'"6s' -37 996.1895 -66.5306 [Xe]5d1"6s' 

Rh 

I I I I 

Pd 

P t  

0 4 0 0  4 0 0  4 8 
r (aul  

Figure 1. Radial parts of pseudo wave functions of the atomic valence orbitals; full curve: 
non-relativistic calculations; broken curve: scalar-relativistic calculations (1 au = 0.529 A),  
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Figure 2. Radial parts of the angular-momentum-dependent ionic pseudopotentials; full 
curve: non-relativistic calculations; broken curve: scalar-relativistic calculations (1 au = 
0.529 A, 1 Ryd = 13.606 eV).  

strongly screened by the higher density of the contracted core charge around the nucleus. 
In the scheme used by us these changes in the valence states due to the relativistic cores 
are correctly simulated by the relativistic pseudopotentials. 

In figure 2 the radial parts of the non-relativistic and scalar-relativistic ionic 
pseudopotentials are shown for the six elements. We notice again that for the three 4d 
elements the differences are very small, whereas for the 5d elements there are bigger 
changes. As already mentioned, close to the heavy nucleus the relativistic potentials are 
weaker due to the increased screening. The s and p potentials are screened more strongly 
than the d potentials which could lead to the conclusion that the s and p wavefunctions 
should be shifted away from the nucleus even more than the d wavefunctions. However, 
here the orthogonality constraint to the contracted deep core s and p states over- 
compensates the weakening of the potentials, whereas for the valence d orbitals no 
corresponding effect is operative because d core orbitals are not close enough to the 
nucleus to be contracted considerably. 

2.2. Mixed basis 

For our calculations of the electronic structure of the valence states in the solids we have 
used an energy-independent mixed-basis set (Louie et aZ1979). It contains a moderate 
number of plane waves augmented by well localised functions centred at the atomic sites 
to describe the localised d states. Since the earlier publication (Louie et a1 1979) several 
improvements, which will be outlined in this section, have been incorporated. 
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In the mixed-basis method the wavefunctions for a crystal with several atoms per 
unit cell are given by 

{&Ek} and {pl;:} are the elements of the eigenvector matrix A of the Hamiltonian matrix 
H, 

(l/v'G) ei(k+G).r  (2) 
are the plane waves and r#$jm(r) are Bloch sums 

(3) 1 e i k . ( R + r )  
4% (4 = 3 c ' cplm(r  - R - r , )  

R 

of localised basis functions centred at the positions of atomic nuclei in the crystal 
(r' = r - R - r,): 

c p l m ( 4  = i ' f ' (T ' )&I(f ' )  r' = /r'I i' = r'/lr'l. (4) 
The h ( r ' )  are for example Gaussians or, in our case, numerical functions described 
below. The cubic harmonics K[ , ( f ' )  are given by 

with m = 0, 1, , . . , I ,  containing associated Legendre polynomials PT(cos 8) as given 
by Abramowitz and Stegun (1965). Q is the volume of the whole crystal containing N 
unit cells with volumes S2,. R are the lattice translation vectors and rj is the basis vector 
of the jfh atom in a lattice unit cell. It is convenient to include the factor i' in (4) in order 
to get real Fourier transforms of the localised functions (see (13) below). 

Localised d-like numerical functions f i(r)  have been derived from atomic valence d 
pseudo-wavefunctions q, (r )  ( I  = 2 ;  see figure 1) by cutting off the tails beyond a certain 
radius r,. A smooth decay to zero at r, is created by multiplying with a cut-off function: 

C is a normalisation constant (J,Z r2 f? ( r )  d r  = l),  a is a parameter determined vari- 
ationally. The cut-off radii have been chosen close to the experimentally observed 
nearest-neighbour distances: Rh/Ir: r, = 2.55 au; Pd/Pt: r, = 2.6 au; Ag/Au: Y, = 
2.7 au. The number of plane waves required for the completeness of the mixed basis is 
minimal, if the spheres containing the localised basis functions approximately touch 
each others. 

The number of plane waves is given by a cut-off energy, E, = /k + GI2. For all six 
elements we have found that E,  = 10.5 Ryd, corresponding to about 60-70 plane waves 
per atom, has been sufficient to converge the total energy to Ryd, if the localised 
basis functions have been carefully optimised. This optimisation has been done by 
varying the parameter a of equation (6) for fixed r, and E, to get a minimum for the total 
energy. In all cases we have found a = 0.7 to be the best value. The basis parameters 
for the non-relativistic and the scalar-relativistic cases have turned out to be equal 
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because the d states are only weakly affected by relativity. Even for the elements'in the 
same column of the periodic system (Rh/Ir, Pd/Pt, Ag/Au) the same parameters have 
been found to be optimal. 

For the calculation of the overlap matrix S and the Hamiltonian matrix H matrix 
elements containing both plane waves (equation (2)) and Bloch sums of the localised 
functions (equation (3)) have to be evaluated. 

In the original mixed-basis method each Bloch sum (equation (3)) is expanded in a 
Fourier series: 

The periodicity volume is the unit cell volume Qc. The Fourier transform @jrm(k + G )  
of the Bloch sum 

can be written in the following form: 

@,lm(k + G )  = e-ic.ri cplm(k + G )  (9) 

with the Fourier transform qim(k  + G )  of the localised orbital of equation (4) (volume 
Q +  CO) 

and the structure factor e-'G.ri of the jth atom in the unit cell. Then the plane-wave 
expansion of the Bloch sums is finally given by 

which renders possible the evaluation of all the matrix elements in Fourier space (Louie 
et all979, Zunger and Cohen 1979, Ihm et ~11979).  

The plane-wave expansion of the Bloch sums (11) requires, because of their strongly 
localised nature, a much bigger number of plane waves than that used in the expansion of 
the crystalline wavefunction (equation (1)). Although the dimension of the Hamiltonian 
and overlap matrices is not increased, the necessary summations in the Fourier space 
consume a considerable amount of computing time, especially for the double sums in 
the local-orbital-local-orbital matrix elements. 

A higher efficiency is possible by calculating all local-orbital-local-orbital and local- 
orbital-plane-wave matrix elements in real space. Instead of expanding the Bloch sums 
in the Fourier space (equation (11)) the plane waves are locally expanded in the real 
space: 

5 t L  

elq.r = 2 2 4niLj,(qY)KLIM(B)KLM(i) (12) 
L=O M = - L  

in terms of spherical Bessel functions j ,  (Abramowitz and Stegun 1965) and cubic 
harmonics KL,w. The three-dimensional integral in equation (10) is then given by ( q  = 
k + G )  

Im ( 4 )  = f i  (q)KIm (9)  4 = 141 9 = d 4 1  (13) 
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with the one-dimensional integral 

(14) 
1 fds) = loffi 4nr2h(sr)fdr) d r  

C 

and the cubic harmonic Klm(q). With the numerical functions of equation (6) for the 
localised functionsh(r) the integrand vanishes for r > r,. 

The matrix elements of the overlap matrix are now given by 
( k  + G'lk + G )  = 6Gc.G 

(@$mlk + G )  = q & ( k  + G )  

($$ml@$/,m,)  = 6,,,,6, I /  ' 6  m,m'. (15) 
The 'on-site' expression in the last equation is an approximation if the integrand in 
equation (14) extends to infinity, for example for Gaussians, but it is exact for the 
numerical functions of equation (6) as long as the spheres around neighbouring sites do 
not overlap. 

The Hamiltonian for the valence electrons consists of three parts, H = 
T + VIoc + Vn'. T is the kinetic energy, VIoc is the local part of the pseudopotential. 
Vn', which is non-local in Fourier space, contains the angular-momentum-dependent 
contributions to the pseudopotential. (More details about the pseudopotential are given 
in appendix A.)  The matrix of the kinetic energy has the following elements: 
( k  + G'lT/k  + G )  = Ik + GI26,,,, 

(@$m I Tlk + G )  = Ik + GI2 (@$m Ik + G)(@$ml Tl$F/,m,) 

The plane-wave-plane-wave matrix elements contain the main part of the non-spherical 
contributions of the potential in the interstitial regions. In the evaluation of the local- 
orbital-local-orbital and local-orbital-plane-wave matrix elements we assume that the 
potential is spherically symmetric within the range r, around the atomic sites rj. Then 
the matrix elements of the local part are given by: 
( k  + G'IV'OClk + G} = VloC(G' - G )  
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The complete eigenvalue problem has the following form: 

(H - ES) A = 0. (19) 
E is a diagonal matrix containing the eigenvalues ~ , ( k )  of H. The eigenvalue problem is 
transformed to standard form by Cholesky decomposition (Louie et a1 1979) and then 
solved numerically at 60 different k-points within the irreducible part of the first Brillouin 
zone (IBZ). 

The charge density p(r )  of the valence electrons is given by 

The w n k  are weighting factors which contain the weights of the k-points in the IBZ and 
the occupations of the one-electron Bloch states ?)flk(r) (equation (2)). The occupations 
are determined by a Gaussian-smearing method (Fu and Ho 1983). 

In former publications using mixed-basis representations (e.g. Fu and Ho 1983, 
Takeuchi et a1 1989) only the Bloch wavefunctions were represented by the mixed basis 
(equation (2)). The charge density was expanded in a Fourier series, i.e. by a pure plane- 
wave basis set: 

p(r )  = 2 p(G)e'G". (21 1 
G 

The number of plane waves for this expansion had to be much bigger than that used in 
equation (2). 

Recently we have developed a mixed-basis scheme for the representation of the 
charge density in real space, p(r) :  

p (r )  = p ( r )  + p( ' ) ( r )  + p ( * ) ( r ) .  (23) 
The first term, p(')(r>, is extended over the whole space and contains the pure plane- 

wave part of p ( r ) :  

(24) 
It can be evaluated, as earlier, by Fourier transformation: 

but now, because the localised parts are not contained, a much smaller number of plane 
waves is sufficient. 

The second and the third term contain the pure local orbital part, p( ' ) ( r ) ,  and the 
mixed local-orbital-plane-wave part, ~ ( ~ ) ( r ) ,  of p(r) :  
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Because the functionsfi(r') contained in $$jm ( r )  ((3) and (4)) vanish for r > rc,  these two 
terms only give contributions to the total charge within the spheres of radius r, around 
the atomic positions. 

After inserting the Bloch sums of the localised functions (equations (3) and (4)) and 
the local expansion of the plane waves (equation (12)) p(')%@) are given by the lattice 
sums (r' = r - R - rj):  

with 

The lattice sums are evaluated via the Fourier transformation 

The angle-dependent parts of the three-dimensional integrals are given by Gaunt coef- 
ficients (Condon and Shortley 1935, Tinkham 1964). The radial parts are integrated 
numerically. The angular momentum expansion in equation (31) has been carried out 
until L = 4. 

The total charge density of the valence electrons in Fourier space, which will be used 
for the total-energy calculation (Ihm et a1 1979), is given by the sum of the densities 
obtained from equations (26) and (33). According to equations (23) ,  (25) and (32), the 
total charge density in real space can be obtained now by fast Fourier transformation 
(FFT) (see, for example, Press et a1 1986). Since in equation (20) the summation is done 
only over the k-points within the IBZ, the charge density finally needs to be symmetrised 
(see appendix B). 

2.3. Total energies and cohesive properties 

We have calculated total energies for the solids using the Fourier space formalism of 
Ihm et al (1979) with charge densities determined according to the aforementioned 
prescription. 
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Sufficient self-consistency is achieved if the change in the total energy between two 
iteration steps is less than 10-’ Ryd. Then the differences in the Fourier components of 
the input and output potentials are less than 

To get the cohesive properties we have calculated total energies for eight to ten 
different values of Wigner-Seitz cell volumes in a range of about (10-20)% around the 
equilibrium volume. The ground state energies of the free atoms, E,q”,,, have been 
chosen as a reference for the total energies (see table 2). 

An analytic function for the energy-volume curve has been fitted to the data (Rose et 
a1 1981). This universal binding curve is characterised by three quantities, the equilibrium 
atomic volume Vo in the solid, the cohesive energy Eo = E(V,) and the bulk modulus 
Bo = Vo d 2E/d V2/ “”: 

Ryd. 

E ( V )  = E,(1 + a) e-“ (34) 
where 0 = (s - s,J/lz is a dimensionless length quantity, s and so are atomic sphere radii 
(V = (4n/3)s3, Vo = (4~/3)s$  and the length parameter A is given by: 

3. Cohesive properties 

The energy-volume curves, from which we have extracted the cohesive properties of 
the considered FCC transition metals, are presented in figure 3. To be able to use the 
same axis scales for all elements we have set the zero level of the ordinates at the energy 
minima. For comparison we have included universal binding curves corresponding to 
experimental data for V,, Bo and Eo (Kittell975). 

Our calculated equilibrium lattice constants a. = (4V0)1/3, bulk moduli Bo and cohes- 
ive energies E ,  are listed in the first rows of tables 3 ,4  and 5, respectively, together with 
values from experiment (last row) and other calculations. 

Figure 3 shows much bigger differences between the non-relativistic and the scalar- 
relativistic energy-volume curves for the 5d than for the 4d elements. This fact is 
demonstrated more clearly in figure 4, where the calculated ground state quantities are 
compared with experimental values. For the 5d metals the scalar-relativistic equilibrium 
volumes and bulk moduli are significantly closer to the experiment than the non- 
relativistic ones. This fact seems to be very reasonable because the atomic nuclei of the 
5d elements are already heavy enough to cause sizable relativistic effects, as shown 
above by the results of the atomic calculations. The agreement of the scalar-relativistic 
results for all three quantities with the experiment is not perfect, but it is in the range 
commonly accepted for results of the LDA for transition metals. The non-relativistic 
equilibrium volumes and bulk moduli, on the other hand, deviate much more from 
experiment. Relativistic effects on core electrons near the nuclei and their indirect 
influence on the valence electrons via the orthogonality condition and screening effects 
for the wave functions contained in the pseudopotential are not negligible for 5d metals. 

In the case of the 4d metals the agreement of the scalar-relativistic results with 
experiment is as good as for the 5d metals. The non-relativistic values are in some 
cases even closer to the experiment than the scalar-relativistic ones. This behaviour is 
unexpected because for the core electrons the non-relativistic treatment (Hamann et al 
1979) is more approximate than the scalar-relativistic treatment (Bachelet and Schluter 
1982). 
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Figure 3. Calculated total energies (dots) and fitted universal binding curves; the zero 
level of the ordinates goes through the minima of the fit-curves; full curve: fit-curves to 
experimental data (Kittel 1975); broken curve with crosses: non-relativistic calculations; 
chain curve with stars: scalar-relativistic calculations (1 ( a ~ ) ~  = 0.148 A3, 1 Ryd = 
13.606eV). 

Comparing our results for the 4d metals with others (compare tables 3 , 4  and 5 )  we 
find a nearly perfect agreement of our non-relativistic data with those of the non- 
relativistic calculations of Moruzzi et a1 (1978). Our scalar-relativistic values for the 4d 
and the 5d metals are also in good agreement with nearly all other available scalar- 
relativistic calculations (Jepsen 1989, Methfessel and Kubler 1982, Terakura er a1 1987, 
Wei et a1 1987). Therefore the somewhat higher quality of non-relativistic over scalar- 
relativistic data for the 4d metals is not an artifact of the mixed-basis pseudopotential 
method we have used, but some kind of error cancellation effect within the LDA. 

We find the non-relativistic bulk modulus and cohesive energy of each 5d element 
to be nearly equal to those of its corresponding 4d element (see tables 4 and 5 and figure 
4). Only the lattice constant is bigger, because of the larger core. 

Which rules of thumb can we use to assess the degree of precision with which scalar- 
relativistically cohesive properties of transition metals are calculated (the ranges of 
our values are given in brackets below)? The lattice constants are very close to the 
experimental values (-1.5% < Aao/ao < +0.3%) while the bulk moduli and cohesive 
energies are always overestimated (+5.1% < ABo/Bo< +26.1%, +3.9% < A/Eol /  
(Eel < +39.0%). 

For the 4d metals, using the non-relativistic approach, lattice constants are slightly 
bigger than experimental values ( + O S  < Aao/no < +1.3%) while bulk moduli and 
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Figure 4. Lattice constants a", bulk moduli BO and cohesive energies 1 Eol for the 4d metals 
(upper panels) and 5d metals (lower panels). The data points are connected by straight lines 
to accentuate the trends; full curve with circles: experimental data (Kittel 1975); broken 
curve with crosses: non-relativistic data (MB); chain curve with stars: scalar-relativistic data 
(MB). 

cohesiveenergiesshownouniquetrend(-2.7% < AB, /B ,  < +5.3%, -7.2% < AlE,I/ 
(Eel < +5.2%). 

Comparing the non-relativistic and the scalar-relativistic results we find that rela- 
tivistic effects reduce the equilibrium volumes and increase bulk moduli and cohesive 
energies (compare figure 4). 

4. Electronic structures 

In this section we give a description of the changes appearing in the valence charge 
densities and band structures due to relativistic effects. We confine ourselves to the 
presentation of the electronic structure of Pt which shows all the effects also seen in Ir 
and Au and, to a lesser extent, in Rh, Pd and Ag. 

In figure 5 non-relativistic and scalar-relativistic band structures along symmetry 
lines of the irreducible part of the first Brillouin zone are plotted. Splittings of degener- 
acies due to spin-orbit coupling in fully relativistic band structures (Christensen 1984) 
are of minor importance for the ground state properties considered here because the 
centres of energy of the multiplets coincide with the scalar-relativistic levels and mostly 
the levels of one multiplet and all either occupied or empty. Figure 5(a) shows the non- 
relativistic band structure at the equilibrium volume (117 au3). The other parts of figure 
5 show scalar-relativistic band structures at three different volumes: (b )  non-relativistic 
equilibrium volume (117 au3); ( c )  scalar-relativistic equilibrium volume (101 au3); ( d )  
compressed volume (91 au3) at which the total energy has increased again to approxi- 
mately the value in figure 5(b) (compare figure 4). 
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Table3. Lattice constants aofor the (a) 4d and ( b )  5d metals (in A); references: [ l ]  Takeuchi 
et a1 (1989), [2] Moruzzi er a1 (1978). [3] Jepsen (1989) (d )  [4] Williams et a1 (1979), [5] 
Methfessel and Kubler (1982), [6] Terakura et a1 (1987), [7] Wei et a1 (1987) and [8] Kittel 
(1975). In contrast to the present contribution the charge densities in reference [l]  are still 
represented by a pure plane-wave basis set (see Louie et a1 1979) and not yet by a mixed 
basis. For silver both Gaussians and numerical functions have been used for the localised 
basis functions (Gaussian/numerical function). 

(a) Rhodium Palladium Silver 

Method NR SR NR SR NR SR Reference 

MB 
MB 
KKR 
LMTO 

ASW 
ASW 
ASW 

LAPW 
Exp , 

3.84 3.79 3.94 3.88 4.11 4.03 
4.108/4.115 I11 

3.83 3.93 4.12 PI 
3.714 3.788 3.934 [3] 

3.86 3.91 4.13 [41 
3.866 [51 

4.028 [6] 
4.057 [7] 

3.80 3.89 4.09 [81 

(5) Iridium 

Method NR SR 

Platinum Gold 

NR SR NR SR Reference 

MB 3.99 3.84 

LMTO 3.764 
ASW 3.851 

MB 

ASW 
LAPW 
Exp. 3.84 

4.11 3.93 4.29 4.07 
4.314 4.104 [l] 

3.835 3.986 [3] 
3.921 4.057 [5] 

4.070 [6] 
4.106 [7] 

3.92 4.08 181 

Table 4. Bulk moduli BO for the (a) 4d and ( b )  5d merals (in GPa); references as for table 3. 

(a) Rhodium Palladium Silver 

Method NR SR NR SR NR SR Reference 

MB 263 294 180 215 106 127 
MB 108.0/96.1 [11 
KKR 261 170 102 PI 

Exp. 270.4 180.8 100.7 PI 

ASW 137 [6] 
LAPW 106 [7] 

(b)  Iridium Platinum Gold 

Method NR SR NR SR NR SR Reference 

MB 263 385 174 297 108 182 
MB 99.6 179.0 [l] 
ASW 189 [6] 
LAPW 180 [7] 
Exp. 355.0 278.3 173.2 PI 
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Table 5. Cohesive energies 1 Eol for the (a )  4d and ( b )  5d metals (in eV); references: as for 
table 3. 

(a )  Rhodium Palladium Silver 

Method NR SR NR SR NR SR Reference 

MB 6.05 7.14 3.61 4.56 3.01 3.34 
MB 2.6413.01 [I1 
KKR 6.11 3.69 2.88 PI 

Exp. 5.75 3.89 2.95 PI 
LAPW 3.53 [7] 

( b )  Iridium Platinum Gold 

Method NR SR NR SR NR SR Reference 

MB 6.34 9.65 3.64 7.05 3.03 3.96 
MB 2.27 3.46 [l]  
LAPW 4.35 [7] 
Exp. 6.94 5.84 3.81 PI 

In the comparison of the non-relativistic and the scalar-relativistic band-structure 
for the same unit-cell volume (5 (a )  and ( b ) )  there are two most obvious changes due to 
relativity. First at the Fermi surface one big hole structure of the highest band along r- 
L nearly vanishes and another one along T-X becomes smaller. The Fermi surface is 
modified by relativistic effects. The second change is a shift of the lowest band away 
from the second lowest band. Both changes can be understood as a shift of the s band to 
lower energies relative to the d bands. For example the pure d states Tzs, and rI2 at the 
r point in the centre of the first Brillouin zone retain the same energies relative to 
the Fermi energy as in the non-relativistic bands, only the s state rl is shifted down 
considerably. This relative shift between d and s bands causes an increased overlap of 
their densities of states which allows for an increase in the s-d hybridisation. 

With the reduction of the unit-cell volume (figure 5(c) and (d ) )  the relativistic bands 
remain qualitatively unchanged, but now the s and d bands become broader indicating 
an increased electronic pressure due to the higher average charge density. 

For an illustration of changes in the valence charge density of the crystal and a 
discussion of the chemical bonding we have found it convenient to subtract a super- 
position of spherically symmetric charge densities of free atoms located at the lattice 
sites from the charge density in the solid: 

For the free Pt atoms we have used the spherically symmetric charge density of the closed 
shell configuration [Xe]5dlo which is our calculated atomic ground state configuration 
(compare tables 2(a)  and 2(b)) .  

Contour plots of the charge density differences A p ( r )  in a (100) and a (111) plane are 
shown in figures 6 and 7. The density difference plotted in each panel of both figures 
belongs to the same calculation as the band structure shown in the corresponding panel 
of figure 5. In table 6 we give values for the density differences Ap(r)  at special locations 
in the crystal. 



4388 C Elsasser et a1 

0 

- 5 . 0  

- 1 0 .  0 

- 5 . 0  

-10 .0  

r L K  r x w U x . r  L K r x w u x  
Figure 5 .  Band structures of Pt along symmetry lines of the irreducible part of the first 
Brillouinzone; theFermienergy has beenset as thezero level. (a )  non-relativisticcalculation, 
V = VF = 1 1 7 ( a ~ ) ~ ;  (b) scalar-relativistic calculation, V = 117(au)l; (c) scalar-relativistic 
calculation, V = Vir  = lOl(au)’; (d )  scalar-relativistic calculation, V = 9 1 ( a ~ ) ~ .  

Looking first at the non-relativistic cases (a)  we see that the charge density in the 
interstitial regions of the solid is bigger than the superposed atomic densities illustrating 
the effect of chemical bonding. The reason for the increase of the density in the bonding 
regions and the decrease around the cores is mainly a s-d hybridisation of full d states 
with empty s states. In the { loo} plane the density along the nearest-neighbour connection 
lines is higher than in the remaining interstitial region. This might suggest the existence 
of directed bonds in the transition metal. But in the (111) plane the whole interstitial 
region contains a nearly homogeneous charge distribution due to the close packing of 
the atoms in the FCC crystals. 

Switching on relativity now by going from parts (a)  to parts ( b )  we observe an increase 
of density between the nearest neighbours along the (110) directions. The reason for 
that is the increase of s-d hybridisation already indicated in the band structures. 

The additional negative charge between the positively charged cores reduces their 
mutual electrostatic repulsion force. Furthermore, due to the contracted cores the 
electronic pressure of occupied s states can be reduced. The crystal prefers to assume a 
smaller volume (panels (c)). This relativistic equilibrium volume is again characterised 
by a homogeneous charge density in the whole interstitial region of the (111) plane of 
about the same amount as there already is along the (110) directions in panels (b) .  By a 
further compression below the relativistic equilibrium volume (panels (d ) )  the charge 
density along the (110) directions does not change. The density is only increased around 
the tetrahedral interstitial sites, located near the triangular interstitial regions of the 
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Figure 6. Contour plots for differences Ap(r)  in the charge density of the solid and the 
superposed charge densities of free atoms in the {loo} planes of Pt. The atomic positions are 
indicated by black dots. Full curves indicate positive differences, broken curves negative 
differences. The unit for the densities is electrons a ~ ~ ~ .  The interval between two contour 
lines is 2.5 X electrons 8 ~ ~ ~ .  Negative differences below -1.25 X lo-* electrons 811-3 

near atomic sites have been cut off. For an explanation of the four panels see the caption of 
figure 5 .  

(111) plane. On the other hand, in the much bigger interstitial region around octahedral 
sites, located in the middle of the cube edges of the (100) planes, the density is much less 
sensitive to volume changes. 

Concluding this section we have found that the equilibrium volume of the FCC 
transition metals is characterised by nearly the same charge density between neigh- 
bouring atoms and in tetrahedral interstitial regions originating from s-d hybridisation. 
By compression or dilation of the volume only the density in the interstitial regions is 
increased or reduced, respectively. The density around the atomic connection line is 
nearly not affected. The difference between the non-relativistic and scalar-relativistic 
results is an increased bonding charge density due to a higher s-d hybridisation. This 
causes a weakening of the core-core repulsion and therefore a reduction of the equi- 
librium volume. 
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Figure 7. Contour plots for differences A p ( r )  in the {lll} planes of Pt. For an explanation 
see the captions of figures 5 and 6. 

As well as the reduction of the volume due to relativity, we have seen in section 3 
that both the relativistic bulk moduli and cohesive energies are larger than the non- 
relativistic ones (compare tables 4, 5 and figure 4). The larger bulk moduli are closely 
connected with the smaller volumes. Moruzzi et a1 (1978) have shown that the bulk 
modulus depends approximately on the average charge density (corresponding to a 
homogeneous free-electron charge density) within the Wigner-Seitz cell, rather than on 
the actual inhomogenous density. In the relativistic crystal, due to the reduced volume, 
the increased average charge density yields the larger bulk modulus. The reason for the 
bigger relativistic cohesive energies is the gain of bonding energy in the solid due to the 
stronger s-d hybridisation. 
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Table 6 .  Charge density differences A p ( r )  at special locations in the contour plots of the 
figures 6 and 7 (in electrons a f 3 ;  bond.: bonding region in the middle between two 
nearest-neighbour atoms, Oct. : octahedralinterstitial region in the { 100)plane. tri. : triangular 
inters!itial region in the { l l l }  plane; for explanation of panels (a)-(d) see caption of figure 
6 .  

Panel (a )  ( b )  (c) (4 

bond. 6.7 9.4 10.1 10.1 
Oct. 2.5 2.1 2.1 2.2 
tri. 5.9 7.2 9.2 10.8 

5. Summary 

In this article we have presented a comparative investigation of the influence of relativity 
on the cohesive properties of 4d and 5d transition metals with face-centred cubic crystal 
structures. 

We have used a first-principles pseudopotential method for total-energy calculations 
in a mixed-basis representation. Since an earlier contribution (Louie et a1 1979) this 
method has been improved in several ways. The charge densities are now computed in 
real and Fourier space simultaneously, which increases the computational efficiency. 

Our results for the transition metals are summarised as follows: for the 5d metals 
scalar-relativistic corrections have to be taken into account to get reasonable values for 
equilibrium volumes, bulk moduli and cohesive energies of the crystals. 

For the 4d metals we have found that the results of the more approximate non- 
relativistic calculations are better than those of the presumably more accurate scalar- 
relativistic ones. We suppose that this behaviour is due to an error cancellation effect. 

The differences in the cohesive properties have been related to the changes in the 
band structures and charge densities of the valence electrons. The main reason for the 
differences is an increase in the s-d hybridisation of the valence orbitals which is 
indirectly originated by the relativistic core contraction via the orthogonality constraint 
for all orbitals and the weakening of the ionic pseudopotentials. 
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Appendix A. Pseudopotentials in Fourier space and in real space 

The angular momentum dependent ionic pseudopotential derived from atomic all- 
electron wave functions in real space 

L 
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The radial parts V(o(r) are shown in figure 2. pl is an angular-momentum projection 
operator. 

For a crystal, according to Ihm et a1 (1979), the local (1 = 0) and the angular- 
momentum-dependent (1 = 1,2,  non-local) partsof the pseudopotential in Fourier space 
are given by 

V y G ’  - G )  = S(G’ - G)V(,,(/G’ - GI) + V,(G’ - C )  

+ Vx(G’ - G )  + V,(G’ - G )  

V”’(k + G ’ ,  k + G )  = S(G’ - G )  V(L) (k  + G’, k + G )  
L 

with the structure factor 

and the non-local form factors 

The P, are Legendre polynomials, the j L  are spherical Bessel functions (Abramowitz 
and Stegun 1965). 

The local part of the pseudopotential contains all interactions with long range. In 
real space inside the sphere of radius r,, centred at the site j ,  it is given by the Fourier 
transform 

v p ( r )  = 2 vIoc(G> elG*r, e1G.r. (A61 
G 

Using the local expansion for elG’r (equation (12)) and making the spherical approxi- 
mation ( L  = 0 only) we obtain 

V p ( r )  = VIoC(G) elGsr, jo(Gr). (‘47) 
G 

The angular-momentum-dependent part in real space has a short range of interaction 
( r  < r J .  It is given by the radial part of the ionic pseudopotential: 

V ( l ) ( 4  = V(I)@) - V(O)(+ (A81 

Appendix B. Charge symmetrisation 

Since the electronic wave functions are computed only for the k-points inside the 
irreducible part of the Brillouin zone (IBZ), the charge density computed from 

P(r) = c W,k/Vnk(r)l2 
k€IBZ,n 

needs to be symmetrised. 
For p(O)(r), the part of the charge density constructed from the plane-wave part of 

the basis, it is convenient to perform the symmetrisation in the Fourier space, i.e. the 
Fourier components p(O)(G), as defined in equation (26), are symmetrised. If the space 
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group {S,lt,} has M elements, where S,  are point-group operations and t, are non- 
primitive translation vectors, then the symmetrised Fourier components are given by 

For p(’) and pC2), which are only non-zero inside a sphere ( r  < rc) centred at the atomic 
sites in the present formulation, it is more convenient to symmetrise directly in the real 
space. Following equation (29), we write the charge density as 

p(r> = 2 pj(r  - rj) (B2) 
i 

where the ri are the atomic sites with local orbitals inside the unit cell. Note that we have 
dropped the lattice vector R from equation (29) since we only need to symmetrise the 
charge density inside one unit cell. The functional form of pi(r - rj) can always be 
expressed as 

p]( r ‘>  = 2 FLk(r’)Kim(+’). 033)  
i.m 

F’I ( r ’ ) ,  the radial charge distribution centred at the site ri corresponding to the angular 
dgmentum index (I, m), can be deduced from equations (30) and (31). 

The symmetrised charge is then given by 

~ s y m ( r )  = 2 pj(r - ~ 1 )  034) 
I 

where 

f l  and rj are related by f j  = S,rj - tp,  and Umm, are rotation matrices defined by 

SpKlm(+’) = C umm,(sp)Klmt(+’), 
m’ 
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